Lecture Notes

Short Course "Aircraft Design"

Dieter Scholz

Bernd Trahmer

1	Introduction	Dieter Scholz
1.1	Requirements, Parameters, Constraints and Objectives	
1.2	Aircraft Design: Part of Aircraft Development	
1.3	General Approach to Aircraft Design	
2	Aircraft Design Sequence	Dieter Scholz
2.1	Preliminary Sizing	
2.2	Conceptual Design	
3	Requirements and Certification	Dieter Scholz
3.1	Origin of Requirements for Aircrafts	
3.1.1	Analysis of the Seat-Range Diagram	
312	Analysis of the Route Network of an Airline	
313	Analysis of a Full Market Survey	
3.2	Calculation of Required Payload	
33	Payload-Range Diagram	
3.4	Certification	
5.4		
4	Aircraft Configurations	Dieter Scholz
4.1	Three-View Drawings of Conventional Aircraft Configurations	
4.2	Three-View Drawings of Unconventional Configurations	
5	Preliminary Sizing	Dieter Scholz
5.1	Landing Distance	
5.2	Take-off Distance	
5.3	Climb Rate during 2 nd Segment	
5.4	Lift-to-Drag Ratio with Extended Landing Gear and Extended Flap	S
5.5	Climb Rate during Missed Approach	
5.6	Cruise	
5.6.1	Thrust-to-Weight Ratio	
5.6.2	Wing Loading	
5.7	Lift-to-Drag Ratio during Cruise	
5.8	Matching Chart	
5.9	Maximum Take-Off Mass	
5.9.1	Operating Empty Mass and Useful Load	
5.9.2	Fuel Fractions	
5.10	Take-off Thrust and Wing Area	
	-	

6 6.1 6.2	Fuselage and Cabin Conceptual Design Fuselage Cross-Section and Cargo Compartment Cockpit, Cabin and Fuselage Tail Section	Dieter Scholz
7	Wing Design	Dieter Scholz
7.1	Wing Parameters	
7.2	Basic Principle and Design Equations	
7.3	Flight and Operational Characteristics	
7.4	Ailerons and Spoilers	
7.5	Example: The Wing of the Airbus A310	
8	High Lift Systems and Maximum Lift Coefficients	Dieter Scholz
8.1	High Lift Systems	
	Trailing edge high lift systems	
	Leading edge high lift systems	
0.0	Generation of high lift	
8.2	Calculation of Maximum Lift Coefficients	
	The maximum lift coefficient of a wing	
	Increase in maximum lift coefficient of an airfeil through high lift de	wicos
	Increase in the maximum lift coefficient of a wing through high lift (lovicos
8.3	Design of High Lift Systems	levices
9	Empennage General Design	Diotor Scholz
91	Functions of Empennages	Dieler Scholz
7.1	Trim	
	Stability	
	Control	
9.2	Shapes of the Empennage	
9.3	Design Rules	
9.4	Design According to Tail Volume	
9.5	Elevator and Rudder	
10	Prediction of Mass and CG-Location	Dieter Scholz
10.1	Mass Forecasts	
10.2	Control of Crowitzy Coloviations	

10.2 Centre of Gravity Calculations

11	Empennage Sizing	Dieter Scholz
11.1	Horizontal Tailplane Sizing	
	Horizontal tailplane sizing according to control requirement	
	Horizontal tailplane sizing according to stability requirement	
	Horizontal tailplane sizing – overall picture	
11.2	Parameters for Horizontal Tailplane Sizing	
	Aerodynamic center	
	Lift coefficient	
	Zero lift angle of attack for a wing	
	Downwash angle	
	Pitching moment of the airfoil at the aerodynamic center	
	Pitching moment of the wing at the aerodynamic center	
	Downwash gradient	
11.3	Vertical Tailplane Sizing	
	Vertical tailplane sizing according to control requirement	
	Vertical tailplane sizing according to stability requirement	
	General assessment of vertical tailplane sizing	
11.4	Parameters for Vertical Tailplane Sizing	
	The rudder - a plain flap	
	Stability coefficient	
	Stability coefficient	
12	Landing Gear Concentual Design and Integration	Rernd Trahmer
	Stable stand on the ground	
	Tail and bank angle clearance	
	Nose landing gear load	
	Integrate wing landing gear into wing plan form	

13 Drag Prediction

- 13.1 Drag Polar
- 13.2 Drag
- 13.3 Zero-Lift Drag
- 13.4 Wave Drag
- 13.5 Induced Drag and Oswald Factor

Prevent airport surface damage (ACN)

Wheel load carrying capability

Absorb touch down energy Braking at take off and landing General layout of the landing gear

Compact integration Free fall capability

Iterative process

Dieter Scholz

14 Design Evaluation / DOC

- 14.1 Costing as an Assessment Method in Aircraft Design
- 14.1.1 Cost Analysis from the Perspective of the Aircraft Manufacturer
- 14.1.2 Cost Analysis from the Perspective of the Operator
- 14.2 Overview of Assessment Methods
- 14.3 Direct Operating Costs (DOC)
- 14.3.1 Calculation of DOC
- 14.3.2 Representation of DOC
- 14.3.3 Calculation of DOC Cost Elements Depreciation
- 14.3.4 Calculation of DOC Cost Elements Interest
- 14.3.5 Calculation of DOC Cost Elements Insurance
- 14.3.6 Calculation of DOC Cost Elements Fuel Costs
- 14.3.7 Calculation of DOC Cost Elements Maintenance Costs
- 14.3.8 Calculation of DOC Cost Elements Staff Costs
- 14.3.9 Calculation of DOC Cost Elements Fees and Charges
- 14.3.10 Calculation of Aircraft Utilization
- 14.3.11 DOC Model Data
- 14.4 Final Comments

15 References

Dieter Scholz

Dieter Scholz